

Tracking Engagement in Real-world Human Communication from Wearable Sensors

⁴Center for the Neural Basis of Cognition, Pittsburgh

Sunreeta Bhattacharya^{1,4}, Kevin Joo², Cheng Ma², Alvaro Fernandez², Yiming Fang², Fernando De la Torre², Lori L. Holt³ ¹Neuroscience Institute, Carnegie Mellon University, ²Robotics Institute, Carnegie Mellon University, ³Dept of Psychology, University of Texas, Austin,

Ongoing and Future Work

Facemesh and body landmarks (using MediaPipe) in red and gaze (in green) → identify FAUs (facial action units) and gestures

- What visual features (such as facial expressions, gestures) are being attended to – as tracked by gaze location?
- Can we train an ML model to detect engaging parts of a conversation?
- Can language models predict and reason about engagement in dyads?

Summary

- Found robust markers of communicative
- engagement in non-verbal features of speech: • voice modulations - the variance of speaker-separated pitch and energy distributions
- extent of coupling measured as frequency of acoustic mirroring events
- the frequency of turn-taking events.
- Replicated classic work on naturalistic speech in dyads (e.g. using hand coding of features via the 'sociometer'²) in naturalistic setups
- Developed a pipeline useful for human-robot interactions

References

. Curhan, J. R. & Pentland, A. Thin slices of negotiation: predicting outcomes from conversational dynamics within the first 5 minutes. J Appl Psychol **92**, 802–811 (2007). 2. Duncan, S. Some signals and rules for taking speaking turns in conversations. Journal of Personality and Social Psychology **23**, 283–292 (1972).

3. pyAnnote, Herve Bredin et al, 2019

Acknowledgements

We are grateful to all those who helped us on this project, especially Erin Smith and Christi Gomez of the Holt Lab, and Kailana Baker-Matsuoka for her work on video ratings.

This work was supported by a James S. McDonnell Foundation grant to LLH and FDIT.